Categories
Climate Change Food & Agriculture

Two threats to food – Three responses

A 1956 world oil production distribution, showing historical data and future production, proposed by M. King Hubbert – it had a peak of 12.5 billion barrels per year in about the year 2000. As of 2016, the world’s oil production was 29.4 billion barrels per year (80.6 Mbbl/day),[1] with an oil glut between 2014 and 2018.

A big part of my motivation for becoming a Master Gardener came from concern over how climate change and peak oil will affect our food supply. By most estimates, peak conventional oil (the stuff that easy to get at and easy to process) occurred about 2007. According to Wikipedia, peak oil is the hypothetical point in time when the maximum rate of global oil production is reached, after which it is argued that production will begin an irreversible decline. Oil production has continued to meet growing global demand because we are now increasingly exploiting oil that is harder to get at and harder to process. This includes sources like shale oil and Canada’s tar sands.

Image from Machine Vision For Agriculture Solutions.

Why does oil production matter for our food supply? It matters because conventional agriculture uses about 10 Kcals of energy for every single kilocalorie of food we consume. (See, for example, this Icelanic study, which only examines conventional on-farm growing.) We use energy to produce the fertilizers and pesticides that are necessary to grow huge fields of the same crop. We use energy to power the equipment used to plant and harvest grains, which supply the majority of our calories. (According to IDRC, wheat, rice, and maize provide just over 50% of the world’s plant-derived food energy, while sorghum, millet, potatoes, sweet potatoes, soybean and sugar provide another 25%.) We use more oil to process foods, package them and ship them to the places where we buy them. It is estimated that the average American meal travels 1,500 miles (over 2,400 km) to its final destination. About one third of this food will be wasted and wind up in landfills, which requires more fuel to transport the garbage from our driveways.

Oil prices follow the same economic rules as other commodities. When supply is scarce, the price goes up. The higher fuel prices we’ve been paying lately are an important factor in the higher food prices we’ve seen in grocery stores.

Drought. Since early 2020, the U.S. Southwest has been experiencing one of the most severe long-term droughts of the past 1,200 years. Multiple seasons of record low precipitation and near-record high temperatures were the main triggers of the drought. Source: EPA “Climate Change Impacts on Agriculture and Food Supply”.

Then there’s climate change. There are numerous – increasingly numerous – reports recently about how extreme weather events, driven by climate change have impacted our food supply. According to the EPA, the main types of stressors are: wildfires; higher temperatures; heat stress on animals, such as dairy cows; flooding and resulting soil erosion; and drought. Even when none of these comes into play, there is a growing body of evidence that higher atmospheric CO2 result in food with fewer nutrients.

My observation is that food production is broadly heading in two opposite directions. One stream, represented by most developed governments, international finance and “big ag” is dedicated to ever more intensive industrial food production, heavily reliant on science and technology, genetically-engineered seeds, and high inputs. The second stream is represented by the work of groups such as FAO, CGIAR, the Rodale Institute in the US, and the Organic Agriculture Centre of Canada. These groups, which receive a tiny fraction of the funding dedicated to conventional agriculture, recognize the reality that a great deal of the world’s food is still produced by small-scale farmers using traditional organic growing. According to the World Economic Forum, 600 million smallholder farmers around the world working on less than two hectares of land, are estimated to produce 28-31% of total crop production and 30-34% of food supply on 24% of gross agricultural area.

From The Guardian UK “If we want to save the planet, the future of food is insects”. Grub’s up: two billion people regularly eat insects – and the number is rising. Photograph: Hans Gissinger/Trunk

Whichever mode of production we chose, there is little doubt that our eating habits will have to change. Many environmentalists embrace the idea that a low- or no-meat diet is the answer. Others argue insects can supply much of our future protein. When Googling “sources of human caloric intake” for this piece, I was amused and slightly horrified to see a lot of results referring to the number of calories to be obtained from eating parts of human beings. Perhaps soylent green will be part of our food future!

Over the next three posts, I’ll explore these three streams of thinking – high-tech agriculture, lower-tech agro-ecological or regenerative farming, and the idea of changing diets. Grab a snack and enjoy!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s