Greetings fellow plant lovers, this crazy-busy time of year continues so it may be another week or so before I can resume my regular science-based posts. In the meantime, allow me to share some observations about spring in Ottawa.
This past Wednesday morning, I joined a group from the Ottawa Horticultural Society for an exclusive tour of the tulip beds at Dow’s Lake. Our tour guide was none other than Tina Liu, Landscape Architect for the National Capital Commission and the artistic genius behind the gorgeous tulip bed designs that have made Ottawa’s Tulip Festival a must-see event.
Tina Liu showing members of OHS around at the Queen Julianna tulip bed, Commissionaire’s Park, Dow’s Lake, Ottawa. Photo by R. Last.
We met at the Queen Julianna bed, one of the “drive-by” flower beds that entice passing motorists to slow down and maybe even stop to smell the flowers. Tina explained that this bed features the earliest tulips and is also where the bulbs gifted annually by the Dutch government are planted. Contrary to popular belief, tulips in all the other beds at Commissionaire’s Park, Dow’s Lake, are purchased by the National Capital Commission (NCC). Ensuring there are enough tulips, flowering at regular intervals during the festival period, on a relatively modest budget makes the design exercise both a logistical and accounting challenge as well as an artistic one!
Stately Elizabeth Arden tulips are supposed to be a later variety. However, the combination of rain and warmer temperatures saw them blooming early this year, underlining the challenge of ensuring continuous blooms. Photo by R. Last.
Tina is a font of knowledge about the history of the tulip festival. During WWII, members of the Dutch royal family sought refuge in Ottawa. Princess Julianna was born in Ottawa’s Civic Hospital, which is located just west of Commissionaire’s Park. Members of the Dutch royalty must be born on Dutch soil to have a claim on the throne. Accordingly, the Government of Canada declared the maternity wing where Julianna was born to be temporarily designated as Dutch sovereign territory.
As a thank you for Canada’s hospitality, after the war ended, the Dutch government began a tradition of gifting tulips to Canada. The Federal District Commission (predecessor of the NCC) initially wanted to plant the tulips on Parliament Hill but Prime Minister Mackenzie King thought the site too solemn to host such colourful blooms. However, while Mackenzie King was away on business, the FDC snuck up to the Hill and planted the tulip bulbs anyway. Since they were underneath the turf, no one knew they were there until the next spring. It seems Mackenzie King wasn’t too upset about this guerilla planting because the NCC archives include a photo of him smiling in front of the tulips.
This exuberantly coloured bed of double tulips was inspired by Tina’s father, whose favorite video game is Candy Crush.
Thursday afternoon, I worked with a couple of my MG colleagues to offer advice to gardeners visiting Beetbox Farm in Ottawa’s west end. It was a lovely sunny day and a wonderful way to spend a few hours outdoors in a bucolic setting.
Master Gardeners in Training Kathleen Atkinson (L) and Adrian Barber (R) at the MGOC advice clinic at Beetbox Farm. The heavy chain in the foreground helped to hold all our papers in place, as there was a pleasant breeze.
For me the most notable event to occur during this advice clinic was that we spotted a least weasel, which was living in the mound visible at the extreme left of the photo above. The least weasel (Mustela nivalis) is the smallest weasel and one of the smallest carnivores in North America. Although their size varies and there are several sub-species, the little fellow we saw was about the size of a chipmunk but sleeker and perhaps slightly longer in the body. Apparently they are classified as least concern by the IUCN, due to their wide distribution and large population. Yet, this was the first time I had ever seen one.
Alaskan least weasel (Mustela nivalis eskimo). Photo by Cecil Sanders.
As a fan of Kenneth Grahame’s Wind in the Willows, I grew up thinking of stoats and weasels as the bad guys. Indeed, the least weasel is apparently a fearsome predator and has been known to take down prey several times its size and weight. Relative to its body size, the weasel has a stronger bite force than a lion, tiger, hyena, or even a bear. To the Toad, Mole and Ratty, heroes of Wind in the Willows, this would make them formidable foes. But I find it hard to square the awe I felt at seeing this tiny, cute creature with the band of cutthroats portrayed in Grahame’s classic.
From Reading Kingdom, The Wind in the Willows by Kenneth Grahame, is one of the Reading Kingdom’s recommended books for children.
We are privileged to live in a world with so many other wonderful creatures. Seeing this little least weasel was a reminder to me of how precious they all are, and of our responsibility to steward these creatures and protect their habitats to others can also enjoy them.
Cet article est le quatrième et dernier d’une série de billets dans lesquels j’explore l’histoire fascinante et tragique de la première banque de semences au monde et de son créateur héroïque. Je remercie le lecteur Michel Leblanc d’avoir partagé cette histoire avec moi et Jocelyne Lavigne pour son aide dans la traduction française.
Réhabilitation posthume
Aujourd’hui, Vavilov est vénéré comme un héros en Russie, du moins par la plupart des gens. Malgré ses hauts et ses bas, son bureau existe toujours, rebaptisé Institut panrusse de recherche scientifique sur les ressources phytogénétiques N.I. Vavilov (VIR en russe).. Des scientifiques du monde entier ont adopté la vision de Vavilov selon laquelle la biodiversité génétique est la clé d’un avenir alimentaire sain. Cette vision a mené à la création de réserves agricoles encore plus importantes et plus sophistiquées, telles que la chambre forte de semences dite “de l’apocalypse” à Svalbard, en Norvège. Le VIR a fait don de semences et d’autres spécimens à Svalbard, dont beaucoup remontent probablement aux premiers voyages de collecte de Vavilov.
Premier timbre de l’URSS en l’honneur de N.I. Vavilov en 1977. Source – Wikipédia
Suite de l’histoire
La passion qui a animé les scientifiques du Bureau de Vavilov pendant le siège de Leningrad perdure aujourd’hui. L’une des expéditions de collecte de semences les plus productives et les plus passionnantes de Vavilov l’a conduit en 1929 en Asie centrale et sur le territoire occupé aujourd’hui par le Kazakhstan. Dans les terres biodiversifiées autour d’Alma Ata et des contreforts des monts Tien Shan, il a découvert la plus riche concentration d’arbres fruitiers au monde, notamment des pruniers, des pêchers et des abricotiers, mais surtout des pommiers à profusion. Rétrospectivement, cette découverte confirme sa théorie sur l’origine des espèces cultivées.
Abondance sauvage dans les monts Tian Shan. Source – La patrie des pommes (en anglais).
La station expérimentale de Pavlovsk
Une grande partie des graines récoltées par Vavilov au cours de cette expédition de 1929 ont été plantées et cultivées à la station expérimentale de Pavlovsk, située juste au sud de Leningrad, aujourd’hui Saint-Pétersbourg.
Lorsque les nazis ont envahi l’URSS et que les lignes de front de la guerre se sont rapprochées de Pavlovsk, les collègues, assistants et étudiants de Vavilov ont transféré la plus grande partie possible de la collection de la station de Pavlovsk dans les sous-sols de l’Institut de l’industrie végétale, au centre de Leningrad. C’est là qu’ils ont sauvegardé les collections au long du siège.
Le président russe Dmitry Medvedev a ordonné la tenue d’une enquête immédiate sur le projet de transformation de la station de recherche de Pavlovsk en habitations privées. Photo de Frans Lanting/Corbis. Extrait d’un article de Fred Pearce, paru en anglais dans The Guardian (Royaume-Uni).
Ironiquement, après avoir survécu aux nazis, à la Seconde Guerre mondiale et à la chute de son créateur, la station expérimentale de Pavlovsk est tombée en ruine avec la chute de l’empire soviétique. Au début des années 2000, elle a failli devenir la proie de promoteurs immobiliers. Une campagne internationale passionnée sur Twitter a permis au président russe de l’époque, Dmitry Medvedev, de suspendre l’exécution du projet. Selon une brève entrée dans Wikipédia, en avril 2012, le gouvernement russe a pris des mesures officielles pour préserver cet important dépôt génétique et empêcher que les terres ne soient cédées à des intérêts privés en vue d’un développement.
La passion pour la protection de ce précieux héritage vient de son caractère unique. Plus de 90 % des plantes ne se trouvent dans aucune autre collection de recherche ni banque de semences. On pense que ses graines et ses baies possèdent des caractéristiques qui pourraient être cruciales pour maintenir des récoltes fruitières productives dans de nombreuses régions du monde, alors que le changement climatique et une vague croissante de maladies, de parasites et de sécheresse affaiblissent les variétés que les agriculteurs cultivent aujourd’hui. Selon les militants de la station, plus de 5 000 variétés de graines et de baies provenant de dizaines de pays, dont plus de 100 variétés de groseilles à maquereau et de framboises, sont en jeu. Les recherches effectuées sur Google pour trouver des informations relatives à la station de Pavlovsk n’ont donné aucun résultat nouveau.
Sur l’ancienne ferme de Melchior Philibert à Charly, la Ferme Melchior en France effectue des travaux de recherche avec des semences alimentaires collectées par Vavilov.
L’héritage
Les banques de semences du monde entier continuent de bénéficier des collections de Vavilov. En France, l’antenne lyonnaise du conservatoire de semences Vavilov a été financée par l’Union européenne pour cultiver un millier de fruits, une centaine de variétés de légumes, de céréales et d’herbes aromatiques, dont certaines ont près de cinq siècles. Plus de 300 variétés lyonnaises, rarement cultivées aujourd’hui, ont été découvertes dans la banque de semences Vavilov de Saint-Pétersbourg et reviendront ainsi à la vie.
Alors que l’agriculture moderne et marchandisée continue d’être menacée par le changement climatique, les semences que Vavilov a collectées et que son personnel a sauvegardées pourraient bien être la clé de notre sécurité alimentaire future.
La liste de ressources ci-dessous fournit de plus amples informations. La version anglaise de ce billet est disponible ici.
Ce billet est le troisième d’une série dans laquelle j’explore l’histoire fascinante et tragique de la première banque de semences au monde et de son créateur héroïque. Je remercie le lecteur Michel Leblanc d’avoir partagé cette histoire avec moi, ainsi que Jocelyne Lavigne pour son aide dans la traduction française.
Près de 3 millions de personnes ont été prises au piège dans Leningrad pendant le siège. Seules 800 000 ont survécu. Tiré de TASS/Getty Images.
Le siège de Leningrad
Pendant ce temps, la situation était sombre au Bureau de Vavilov. En juin 1941, l’Allemagne nazie envahissa l’Union soviétique. Leningrad était l’une des principales cibles des Allemands, en partie à cause du Bureau de Vavilov. Les scientifiques nazis appréciaient le pouvoir de la génétique à l’excès (Ils ont essentiellement commis l’erreur inverse de celle de Lysenko en soutenant que l’éducation et l’environnement ne comptaient pas et que les gènes seuls déterminaient notre destin.) Les nazis savaient que Vavilov avait rassemblé un trésor inestimable de richesses agricoles et ils voulaient s’en emparer!
Imaginez le moral du Bureau de Vavilov. Leur patron avait disparu et leur propre gouvernement les avait diabolisés et traités de traîtres pour leurs recherches. Alors que les nazis avançaient sur Leningrad, désireux de voler le travail de toute une vie, qui ne désespérerait pas ?
Les choses ont ensuite empiré. Le siège de Leningrad a duré 872 jours. Au lieu d’obus et des canons, l’arme principale des nazis a été la famine; ce que Vavilov avait cherché à prévenir presque toute sa vie. Les nazis ont tenté d’affamer les Russes pour qu’ils se soumettent.
Illustration par J. S. Lawson de poires sauvages collectées en Asie centrale, l’un des six panneaux que Vavilov a remis au pomologue Richard Wellington lors du Congrès international de génétique en 1932. Tiré de Biodiversity Heritage Library.
Les réserves diminuant, les habitants de Leningrad se sont mis à chasser les chiens et les chats; ils en furent réduits à manger du rouge à lèvres, des chapeaux de cuir et des manteaux de fourrure.
La seule nourriture de toute la ville se trouvait à l’intérieur du Bureau. Mais, chose incroyable, les scientifiques n’ont jamais puisé dans leurs réserves pour apaiser leur faim. Ils mouraient de faim alors qu’ils étaient entourés de nourriture – ils travaillaient avec de la nourriture, pensaient à la nourriture, touchaient de la nourriture tous les jours. Pourtant, aucun d’entre eux n’a jamais porté une bouchée à ses lèvres. Comme l’un d’entre eux l’a dit plus tard, « il était difficile de marcher. Il était insupportablement difficile de se lever le matin, [même] de bouger les mains et les pieds […] mais il n’était pas le moins du monde difficile de s’abstenir de manger la collecte. » Il ne s’agissait pas non plus d’une simple rhétorique. Un scientifique émacié est même mort à son bureau, un paquet de cacahuètes nutritives à la main.
Comment pouvaient-ils résister à une telle tentation ? Tout d’abord, ils pensaient au monde après la guerre. Ils savaient qu’ils pourraient aider les nations à se relever et à nourrir leur population, en particulier dans les endroits où les récoltes avaient été anéanties. Ils ont également envisagé l’histoire de l’humanité dans son ensemble. Depuis que les premiers agriculteurs ont planté des graines il y a environ 10 000 ans, il y a eu une chaîne ininterrompue de cultures à travers le temps. Les scientifiques du Bureau de Vavilov se considéraient comme les gardiens de cet héritage, sans doute le plus important de l’humanité. Manger les graines aurait été l’équivalent d’une rupture de cette chaîne.
Les scientifiques ont donc attendu, et ils sont morts l’un après l’autre. Un scientifique du riz, un scientifique de la pomme de terre, le scientifique de l’arachide qui tenait ce paquet, et six autres. Au total, 700 000 personnes sont mortes de faim à Leningrad pendant les 872 jours du siège. Mais il est difficile de trouver une mort plus poignante que celle de ces neuf scientifiques de l’alimentation.
Alors que les Américains connaissent une ou deux variétés de cacahuètes, les agriculteurs d’autres régions du monde ont pu développer des centaines de variétés grâce à la capacité naturelle de la cacahuète à mélanger ses deux sous-génomes distincts pour produire de nouvelles caractéristiques. Voici quelques-unes des arachides cultivées par le peuple Caiabí, qui vit sur l’île de Ilha Grande, dans le Mato Grosso, au Brésil. L’arachide est très importante pour eux et ils en cultivent diverses sortes, chacune ayant son utilisation, son nom et son histoire. (Photos de Fábio de Oliveira Freitas). Extrait d’un article paru sur UGA Today, University of Georgia.
L’histoire se poursuit dans notre prochain billet. En attendant, vous trouverez ci-dessous une liste de références pour une lecture plus approfondie. La version anglaise de ce billet se trouve ici.
Over the next few posts, I’ll be trying to catch up on the many articles I’ve collected about soil.
Samples were harvested at two time points in July and October 2019 at two long-term warming experiments, SWaN and PH, at the Harvard Forest long-term ecological research station, which had been established for 13 and 28 years, respectively. Credit: Global Change Biology (2022).
The largest terrestrial carbon sink on Earth is the planet’s soil. One of the big fears is that a warming planet will liberate significant portions of the soil’s carbon, turning it into carbon dioxide (CO2) gas, and so further accelerate the pace of planetary warming. A key player in this story is the microbe, the predominant form of life on Earth, and which can either turn organic carbon—the fallen leaves, rotting tree stumps, dead roots and other organic matter—into soil, or release it into the atmosphere as CO2. Now, an international team of researchers led by the University of Massachusetts Amherst has helped to untangle one of the knottiest questions involving soil microbes and climate change: what effect does a warming planet have on the microbes’ carbon cycling? The answer is surprising: increased temperature decreases the rate at which soil microbes respire CO2—but only in the summer. During the rest of the year, microbial activity remains largely historically consistent.
But there’s a catch to this seemingly happy story. Soil microbes are releasing less CO2 in the summer because they’re starving. And they’re starving because long-term warming is threatening the viability of deciduous trees, on whose dead leaves the microbes depend. “One of the major outcomes of our study,” says Kristen DeAngelis, professor of microbiology at the University of Massachusetts Amherst and senior author of the study, published in the journal Global Change Biology, “is that all those autumn leaves mitigate the negative effects of global warming on soil microbes.” For now. But fewer dead leaves means less food for the microbes and seems to be leading to a reduction in microbial biomass during the summer.
A new set of quantitative models that incorporates pH into the metabolic theory of ecology (MTE) has been developed by an international team that includes Penn State assistant professor of plant science Francisco Dini-Andreote. The work is included in a paper published by the Proceedings of the National Academy of Sciences. In general terms, the metabolic theory of ecology links rates of organism diversification (i.e., the metabolic rate of an organism) with the organisms’ body size and body temperature. “Soils are the most complex and biodiverse ecosystems on Earth,” said Dini-Andreote, a member of Penn State’s Microbiome Center. “In soils, microbial diversity plays indispensable roles in the anabolic and catabolic cycles of carbon, nitrogen and sulfur, without which the diversity of life forms—including plants, animals and other microbes—that evolved on our planet would not have been possible. In addition, advancing our ability to predict patterns of soil biodiversity is critical to better understanding how climate change will affect soil functioning and how soil microbes will respond to shifts in temperature and precipitation regimes.”
Soil sample from the Washington State University field site in Prosser, Washington. Credit: Andrea Starr, Pacific Northwest National Laboratory
Interactions among microorganisms in soil lead to the release of nutrients derived from complex organic matter in that soil. This community metabolism creates food for both microbes and plants. However, scientists don’t fully understand the specific nature of many of these interactions. For example, scientists want to know why some microbes are more successful than others and what roles individual members play in their communities. To find out, researchers from Pacific Northwest National Laboratory, Iowa State University, University of Nebraska–Lincoln, and Argonne National Laboratory studied a model microbial community fed with a complex source of carbon and nitrogen commonly found in soils—chitin.
Their findings, published in the journal mSystems, show that certain microbes drive specific steps of the chitin breakdown process, but the most abundant microbes are not necessarily the most important. The model microbial community used in this study included eight soil bacteria—some chitin degraders and some non-degraders. The researchers observed that the species organized into distinct roles when it was time to break down the chitin. Intriguingly, the most abundant members of the model community were not those that were able to break down chitin itself, but rather those that were able to take full advantage of interactions with other community members to grow using chitin breakdown products. The study answers important questions about how complex carbon and nutrient sources are metabolized by interacting microorganisms to support plant and microbial growth in soil ecosystems.
A hammer and chisel were required to collect samples from the terrain where Barbacenia macranta lives, in this case, exposed rock. Credit: Rafael Soares Correa de Souza/GCCRC
A study published inThe ISME Journal identified 522 genomes of archaea and bacteria associated with the roots and soil of two plant species native to the Brazilian montane savanna ecoregion known as campos rupestres (“rocky meadows”). Hundreds of microorganisms hitherto unknown to science were identified, showing that the ecoregion is a biodiversity hotspot and that many new organisms have yet to be described and classified in Brazil.
The discovery could potentially be a basis for the development of biological substitutes for the chemical fertilizers used by farmers, especially those containing phosphorus. “Phosphorus is normally present in the soil, but not always in a form that plants can use. Most of the microorganisms we found make phosphorus soluble so that plants can absorb it,” said Antônio Camargo, first author of the article.
Signs of microbial life in the Holy Fire burn scar. Credit: Sydney Glassman/UCR
UC Riverside researchers have identified tiny organisms that not only survive but thrive during the first year after a wildfire. The findings could help bring land back to life after fires that are increasing in both size and severity. The Holy Fire burned more than 23,000 acres across Orange and Riverside counties in 2018. Wanting to understand how the blaze affected bacteria and fungi over time, UCR mycologist Sydney Glassman led a team of researchers into the burn scar. “When we first came into fire territory, there was ash up to my shins. It was a very severe fire,” Glassman said.
The researchers visited the scar nine times over the course of the next year, comparing the charred earth with samples from nearby, unburned soil. Their findings, now published in the journal Molecular Ecology, show that the overall mass of microbes dropped between 50 and 80% after the fire, and did not recover during that first year. However, some things lived.
UCR researcher sampling soil in the Holy Fire burn scar. Credit: Sydney Glassman/UCR.
It wasn’t just one type of bacteria or fungi that survived. Rather, it was a parade of microbes that took turns dominating the burned soil in that first post-fire year. “There were interesting, distinct shifts in the microbes over time. As one species went down, another came up,” Glassman said.
Certain microbes called methanotrophs regulate the breakdown of methane, a greenhouse gas. Fabiola Pulido-Chavez, UCR plant pathology Ph.D. candidate and first author of the study, noticed that genes involved in methane metabolism doubled in post-fire microbes. “This exciting finding suggests post-fire microbes can “eat” methane to gain carbon and energy, and can potentially help us reduce greenhouses gases,” Pulido-Chavez said.
What the researchers saw in the soil bears some resemblance to the human body’s response to a major stress. What is now being learned about post-fire microbe behavior could change older theories about plant behavior, since microbes were not factored into them. “To me, this is exciting, as microbes have long been overlooked, yet they are essential for ecosystem health,” Pulido-Chavez said.
One open question that remains is whether adaptations that plants and microbes have developed in response to wildfires will adapt again to megafires or recurrent fires. Whereas there might have been a period of several decades before a plot of land burned more than once, it is increasingly common for the same soil to burn again in fewer than 10 years.
This is the fourth and final of several posts wherein I explore the fascinating and tragic story of the world’s first seed bank and its heroic creator. My thanks to reader Michel Leblanc for sharing this story with me.
Posthumous Rehabilitation
Nowadays, Vavilov is revered as a hero in Russia—at least by most people. Despite its ups and downs, his bureau still exists, renamed as the N. I. Vavilov All-Russian Scientific Research Institute of Plant Genetic Resources (VIR in Russian). Scientists across the globe have embraced Vavilov’s insight that genetic biodiversity is the key to a healthy food future. This has led to the founding of even bigger and more sophisticated agricultural stockpiles, such as the so-called doomsday seed vault in Svalbard, Norway. Fittingly, the VIR has donated seeds and other specimens to Svalbard—presumably many of them dating back to Vavilov’s early collecting trips.
First USSR stamp honoring N.I. Vavilov in 1977. Source — Wikipedia
Aftermath
The passion that sustained the scientists at the Bureau through the Seige of Leningrad continues today. Among Vavilov’s most productive and exciting seed-gathering expeditions took him in 1929 to Central Asia and the territory now occupied by present-day Kazakhstan. In biodiverse lands around Alma Ata and the foothills of the Tien Shan Mountains, he discovered the world’s richest concentration of fruit trees, including plum, peach and apricot; but in especially terrific profusion were the apple trees. In retrospect, this discovery confirmed his theory about the origins of culitvated species.
Many of the seeds Vavilov collected during this 1929 expedition were eventually planted and grown out at the Experimental Pavlovsk Station, which lies just south of Leningrad, now Saint-Petersburg.
Russian president Dmitry Medvedev has ordered an immediate inquiry into the Pavlovsk research station being turned into private housing. Photograph: Frans Lanting/Corbis. From an article by Fred Pearce in The Guardian UK.
Ironically, after surviving the Nazis, WWII, and the downfall of its creator, the Experimental Pavlovsk Station fell into disrepair with the fall of the Soviet empire. Then in the early 2000s, it almost fell prey to land developers. An impassioned international campaign on Twitter resulted in a stay of execution by then-Russian president Dmitry Medvedev. According to a scant entry in Wikipedia, in April 2012 the Russian government took formal action to preserve this important genetic repository and stop the land from being conveyed to private interests for development.
The passion to protect this precious legacy comes from its uniqueness. More than 90% of the plants are found in no other research collection or seed bank. Its seeds and berries are thought to posess traits that could be crucial to maintaining productive fruit harvests in many parts of the world as climate change and a rising tide of disease, pests and drought weaken the varieties farmers now grow. At stake, say campaigners for the station, are more than 5,000 varieties of seeds and berries from dozens of countries, including more than 100 varieties each of gooseberries and raspberries. Google searches for news related to the Pavlovsk Station turned up no new results, so let’s hope it is still intact.
Seed banks around the world continue to benefit from Vavilov’s collections. In France, the Lyon branch of the Vavilov seed conservatory has been funded by the EU to grow out a thousand fruit, a hundred varieties of vegetables, cereals, and aromatic herbs, some of which are almost five centuries old. More than 300 varieties from Lyon, that are seldom cultivated today, were discovered in the Vavilov seedbank of Saint-Petersburg and will thus come back to life.
As modern commodified agriculture continues to come under threat from climate change, the seeds Vavilov collected, and his staff safeguarded, may hold the key to our future food security.
The resource list below provides more information.
This is the third of several posts wherein I explore the fascinating and tragic story of the world’s first seed bank and its heroic creator. My thanks to reader Michel Leblanc for sharing this story with me.
Meanwhile, things were grim back at the Bureau. In June 1941, Nazi Germany invaded the Soviet Union. Leningrad was a major target of the Germans—in part because of Vavilov’s bureau. Nazi scientists appreciated the power of genetics – to a fault. (They essentially committed the opposite error of Lysenko in arguing that nurturing and environment counted for nothing and genes alone determine our fate.) The Nazis knew that Vavilov had gathered a priceless trove of agricultural riches and they wanted it!
Imagine the morale at the Bureau. Their boss had already been disappeared, and their own government had demonized them and called them traitors for their research. With Nazis marching on Leningrad, eager to steal their life’s work, who wouldn’t despair?
Then things got worse. The Siege of Leningrad dragged on for nearly 900 days. Instead of shells and guns, the Nazi’s main weapon was the very thing Vavilov had worked his whole life to prevent—famine. They tried to starve the Russians into submission.
Illustration by J. S. Lawson of wild pears collected in central Asia, one of six panels Vavilov gave to pomologist Richard Wellington at the International Genetics Congress in 1932. From Biodiversity Heritage Library.
As supplies dwindled, Leningrad’s residents started hunting dogs and cats. Soon they were reduced to eating lipstick, leather hats, and fur coats.
The only food in the whole city lay inside the Bureau. Incredibly, though, the scientists there never dipped into their stores to ease their hunger pangs. They were starving while surrounded by food—they worked with food, thought about food, touched food every day. Yet none of them ever put a morsel to their lips. As one later said, “It was hard to walk. It was unbearably hard to get up in the morning, [even] to move your hands and feet . . . but it was not in the least difficult to refrain from eating up the collection.” This wasn’t just stirring rhetoric, either. One emaciated scientist actually died at his desk, holding a packet of nutritious peanuts in his hand.
While Americans are familiar with one or two varieties of peanut, farmers in other parts of the world have been able to develop hundreds of varieties thanks to the peanut’s natural ability to shuffle its two distinct subgenomes to produce new traits. These are some of the peanuts grown by the Caiabí people who live on the Ilha Grande, Mato Grosso, Brazil. Peanut is very important for them and they cultivate diverse types, each one with its use, name and story. (Photos by Fábio de Oliveira Freitas). From an article on UGA Today, University of Georgia.
How could they fight off such temptation? First, they were thinking about the world after the war. They knew they would be able to help nations to get back on their feet and feed their people, especially in places where crops had been wiped out. They were also looking at the broader sweep of human history. Ever since the first farmers planted seeds some 10,000 years ago, there’s been an unbroken chain of crop plantings through time. The bureau scientists saw themselves as stewards of this heritage—arguably the most important heritage of humankind. Eating the seeds would have been tantamount to snapping that chain.
So the scientists waited, and they gradually died. A rice scientist, a potato scientist, the peanut scientist clutching that packet, and six more. In all, 700,000 people starved in Leningrad during the 872-day siege. But it’s hard to find any deaths more poignant than those nine food scientists.
The story continues in our next post. Meantime, please find below a list of references for more reading.